Extensions 1→N→G→Q→1 with N=C5×C15 and Q=C22

Direct product G=N×Q with N=C5×C15 and Q=C22
dρLabelID
C10×C30300C10xC30300,49

Semidirect products G=N:Q with N=C5×C15 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C5×C15)⋊1C22 = C5×S3×D5φ: C22/C1C22 ⊆ Aut C5×C15304(C5xC15):1C2^2300,37
(C5×C15)⋊2C22 = S3×C5⋊D5φ: C22/C1C22 ⊆ Aut C5×C1575(C5xC15):2C2^2300,38
(C5×C15)⋊3C22 = D5×D15φ: C22/C1C22 ⊆ Aut C5×C15304+(C5xC15):3C2^2300,39
(C5×C15)⋊4C22 = D15⋊D5φ: C22/C1C22 ⊆ Aut C5×C15304(C5xC15):4C2^2300,40
(C5×C15)⋊5C22 = C3×D52φ: C22/C1C22 ⊆ Aut C5×C15304(C5xC15):5C2^2300,36
(C5×C15)⋊6C22 = C2×C5⋊D15φ: C22/C2C2 ⊆ Aut C5×C15150(C5xC15):6C2^2300,48
(C5×C15)⋊7C22 = C10×D15φ: C22/C2C2 ⊆ Aut C5×C15602(C5xC15):7C2^2300,47
(C5×C15)⋊8C22 = D5×C30φ: C22/C2C2 ⊆ Aut C5×C15602(C5xC15):8C2^2300,44
(C5×C15)⋊9C22 = C6×C5⋊D5φ: C22/C2C2 ⊆ Aut C5×C15150(C5xC15):9C2^2300,45
(C5×C15)⋊10C22 = S3×C5×C10φ: C22/C2C2 ⊆ Aut C5×C15150(C5xC15):10C2^2300,46


׿
×
𝔽